27th Oil Shale Conference CSM, Golden, CO 2007

Field Techniques for Quantifying the Vertical Permeability Characteristics of Oil Shale

Michael J. Day and Landon Beck Norwest Applied Hydrology Denver, CO USA

October 16, 2007

Why is Containment Important ?

Containment:

- Restricts ground water influx into process zone (increased heating efficiency)
- Prevents migration of produced gases during heating
- Protects overlying water quality from regulated hydrocarbon condensates as a result of gas migration
- Increases effectiveness of post-operational sub-surface reclamation activities
- Prevents post-operational migration of affected ground water that contacts process zone residuals

Requirements:

- Lateral Containment: Engineered (e.g. freeze wall) or geologic (e.g. within saline zone)
- Vertical Containment: Low vertical permeability geologic units or "seal intervals" for top and bottom containment (e.g. unfractured, laterally continuous oil shale intervals)

Geologic Containment Characteristics

- Laterally continuous
- Low vertical permeability
- Relatively free of vugs and fractures
- Maintains separation of hydrostratigraphic units during the operational and postoperational phases of an in-situ project
- Potential to influence ground water flow patterns and water quality on a regional scale

Rich & Lean Oil Shale

Available Methods for K, **Estimates**

Local ncreasing

Scale

Point

Regional

Laboratory permeability tests on core samples

- Secondary permeability features generally not included Ο
- Unfractured oil shale $Kv \sim 10^{-5}$ ft/day 0

Field testing of coreholes and wells

- Packer-buildup (slug) tests (single drill holes) 0
- Packer-pumping tests (single or multiple drill holes) Ο
- Clustered well tests \bigcirc

Water balance considerations (Basin Margins)

- Canyon-bounded areas provide "closed system" 0
- Discharge = Steady-state vertical flow = $K_v * I_v$ Ο
- Numerical flow model matches to observed vertical potentiometric head differentials
 - K_v range: 10⁻⁵ to 10⁻³ ft/day. 0
 - Relatively unfractured, lower permeability intervals are 0 dominant control on vertical ground water flow.

Well Testing – Well Damage (Skin)

Positive Skin (Damage)

Negative Skin (Enhancement)

Packer-Buildup Test

Inflatable Packers

- Three packers isolate two sections within bore hole – "test" and "control" sections
- Inflated bladder length = 2.5 ft

Pressure Transducers

- Four transducers measure pressure response above and below each packer
- Pressure response within two isolated sections

Test Method

- Nitrogen to establish pre-test pressure differential in test section (~100 psi)
- Instantaneous pressure release
- Pressure build-up in test section
- Pressure response in control section
- K_h measured in "test" interval (7.5 ft)
- K_v measured across middle packer interval (2.5 ft)

Packer-Buildup Type Curves

 K_v Range = 10⁻⁴ to 10⁻² ft/day

Example Packer Buildup Test

Packer Build-up Test – Hvorslev Analysis

Packer-Pumping Test in Open Bore Hole

- Two packers are used to isolate transmissive zone
- Packers are inflated and pressures allowed to stabilize
- Test zone pumped for three days
- Zones above and below test zone monitored for pressure response
- Magnitude of response yields vertical hydraulic conductivity

Response across Packed-off Interval

Example of Packer-Pumping Test

Clustered Well Pumping Test

- Two wells completed in adjacent transmissive zones (see figure right)
- Pump one well for one to three days
- Well(s) above and/or below pumped zone monitored for pressure response
- Magnitude of response yields vertical hydraulic conductivity

Example of Cluster Well Pumping Test

Conclusions

- Vertical response testing successfully used to quantify the vertical hydraulic conductivity of oil shale intervals
- Longer-term tests (1 to 3 days) to quantify K_v for thick, low permeability intervals and confirm lateral continuity
- Shorter-term (~1 hr) packer tests used to quantify
 K_v of thin (~2.5 ft) intervals and allow more rapid identification of potential containment units