Evolution in Development of Daqing Oil Shale in China

Fang Chaohe, Zheng Dewen, Ge Zhixin
Wang Hongyan Lei Huaiyu Zhang Ruida
Research Institute of Petroleum Exploration and Development-
LangFang
New Energy Department

28th Oil shale Symposium, Oct. 15, 2008
Nowadays, the development and utilization of oil shale have surged around the world with highly increasing oil price. The former is extracting shale oil by employing new technologies such as developing large scale, environmental and efficient retort, the latter is moving toward multi-utilization such as oil refining, power generating, cement and building material production.

CNPC, the largest oil company in China, has been involved in development of oil shale and planned to complete the project of annual production of shale oil reaching 3×10^4 tons in the “11th five-year plan” in Daqing area.
INDEX

- Oil shale resource in china
- The current status of shale oil production in china
- The development prospect of oil shale in CNPC
- Conclusions
1.1 Oil shale reserves in the world

- Overall shale oil reserves in the world is 411×10^9 t
- Uneven distribution: (Dyni, 2002) mainly in America, China, Russia and Brazil etc.
- Overall oil shale reserves in China are 47.6×10^9 t and the recoverable reserves of shale oil are 12.0×10^9 t (LIU Zhaojun, 2006)

<table>
<thead>
<tr>
<th>Nation</th>
<th>reserves of shale oil (10^8 t)</th>
<th>Evaluation time</th>
</tr>
</thead>
<tbody>
<tr>
<td>America</td>
<td>3035.66</td>
<td>2003</td>
</tr>
<tr>
<td>China</td>
<td>476.0</td>
<td>2006</td>
</tr>
<tr>
<td>Russia</td>
<td>387.7</td>
<td>2002</td>
</tr>
<tr>
<td>Brazil</td>
<td>117.34</td>
<td>1994</td>
</tr>
<tr>
<td>Canada</td>
<td>63.00</td>
<td>1997</td>
</tr>
<tr>
<td>Jordan</td>
<td>52.33</td>
<td>1999</td>
</tr>
<tr>
<td>Australia</td>
<td>45.31</td>
<td>1999</td>
</tr>
<tr>
<td>Estonia</td>
<td>24.94</td>
<td>2000</td>
</tr>
<tr>
<td>Italy</td>
<td>14.31</td>
<td>2000</td>
</tr>
<tr>
<td>France</td>
<td>10.02</td>
<td>1978</td>
</tr>
</tbody>
</table>
1.2 Oil shale distribution in China

- China is rich in oil shale; there are over 80 oil shale deposits which are located in 22 provinces, 47 basins. (Liu Zhaojun, 2006)

- China’s oil shale is mainly distributed in the east part, the central part and Qinghai-Tibet (SongLiao basin, Ordos basin and Jungar basin etc).

- The oil shale resources of the east part are 35 % of the nation’s total.
1.4 The distribution of oil content

- 18.2 ×10⁹ t of shale oil with an oil content of 5%-10%, about 35% of total, and
- 14 ×10⁹ t with an oil content of more than 10%, and about 29% of the total.
1.5 Burial depth of oil shale

- Shale oil within the burial depth of 300-1000 meters is about 60% of the total, which presents great challenges for the middle and deep parts development.
INDEX

- Oil shale resource in China
- The current status of shale oil production in China
- The development prospect of oil shale in CNPC
- Conclusions
2.1 Comparative analysis of oil production and consumption in China

- From 1993, becoming the crude oil importer
- In 2007, imported crude oil is 163×10^6 t and Oil product is 37.4×10^6 t, aggregate quantity is 2000×10^6 t, whereas the domestic crude oil production is 187×10^6 t, which causes our country’s ratio of depending on for existence goes up to 51%.

Based on the data Of IEA:
- 2007: the world daily requirement is 85.7×10^6 t bpd, whereas the daily production is 84.86×10^6 t bpd.
- 2008: daily requirement is 87.8×10^6 t bpd, daily production 87.39×10^6 t bpd.
2.2 The production output and development trend of shale oil

- The output in 2007 is 380×10^3 t.
- It is estimated that the output in 2010 will be 1×10^6 t.
- It is estimated that the output in 2020 will amount to 5×10^6 t.
3.1 Abundant oil shale resources in the CNPC mining area, highly potential to expanding reserves

Daqing area is one of the major concentration areas of oil shale in CNPC. In recent two years, CNPC has done a great deal of work in Daqing area.

- Daqing area has 19 oil shale deposits and the shale oil resource is 1.1×10^9 tons.
3.2 Oil shale in Liushuhe basin

3.2.1 The main introduction to Liushuhe shale oil

- The oil shale in Liushuhe basin is \(55.9 \times 10^6 \) t, oil reserves exceeds \(5.5 \times 10^6 \) t.
- Due to the great thickness, shallow burial depth and high oil content, it is becoming the most preferable development and utilization area.

The total reserves in LiushuheY109 well is amount to \(17.4 \times 10^6 \) t and the shale oil \(2.6 \times 10^6 \) t, the potential of expanding reserves is high in the CNPC mining area.

Location: the southern part in Daqing area, total area 1400 km².
Oil content: 3.7-17.2%
Depth: 10-134m
Thickness: 2-15m
3.2 Oil shale in Liushuhe basin

3.2.3 Oil yield

Surface water: 8.51~33.35 % 22.5 %
Pyrolysed water: 2.71%~13.4 % 9.27 %
Semi-coke: 36.1 % ~ 80.94 % 49.7 %
Pyrogenous steam: 1.11 % ~ 21.43% 9.42 %
Heat value: 2650 ~ 7962 kcal/kg 5809 kcal/kg

Experimental data analysis indicated: Liushuhe oil shale with the characters of three “highs”:
✓ High oil yield: 6-14 %
✓ High pyrogenous steam: average 9.42 %
✓ High heat value: average 5809 kcal/kg
3.2 Oil shale in liushuhe basin

3.2.2 The character of oil shale

After laboratory analysis, the organic kerogen type of Daqing oil shale is saprohumolith type, which has the high oil and gas production ability.
3.2 Oil shale in Liushuhe basin

3.2.4 Thermal Stability Analysis

- Small intensity and fragile, especially after retorting.
- Gas heat carrier method is unsuitable

<table>
<thead>
<tr>
<th>Sample number</th>
<th>Depth (m)</th>
<th>Size (mm)</th>
<th>Pressure (kN)</th>
<th>Uniaxial compressive strenth P (kpa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liu Y108 #</td>
<td>71.9</td>
<td>58.3</td>
<td>3.6</td>
<td>1348.58</td>
</tr>
<tr>
<td>Liu Y105 #</td>
<td>71.5</td>
<td>60.15</td>
<td>1.5</td>
<td>527.87</td>
</tr>
<tr>
<td>Liu Y109 #</td>
<td>80</td>
<td>63.97</td>
<td>1.5</td>
<td>466.71</td>
</tr>
<tr>
<td>Liushuhe124#</td>
<td>86.85-87.6</td>
<td>Φ102×115</td>
<td>54.4</td>
<td>6660</td>
</tr>
<tr>
<td>Liushuhe122#</td>
<td>37.15-38.15</td>
<td>Φ95×110</td>
<td>0.5</td>
<td>70</td>
</tr>
<tr>
<td>Fushun shale</td>
<td></td>
<td></td>
<td></td>
<td>7800</td>
</tr>
</tbody>
</table>
3.3 Retorting process research

3.3.1 Choosing retort process

Due to the low thermal resistance, small intensity, only fine particle solid heat carrier method can be adapted. After several meeting, the Chinese and Russian experts approved and CNPC has accepted the plan.
3.3 Retorting process research

3.3.2 The evolution of retorting technologies

- CNPC has launched the development retorting and designed the facilities with daily processing ability of 24 t. Furthermore, the field experiment has been done and achieved good results.
- In 2005, it has been used in the retorting of dry oil sand, in 2007 in oil shale and oil sludge.
3.3 retorting process research

3.3.3 The evolution of retorting technologies

- From 2006, CNPC starts to research and develop new type retorting methods to process the oil shale with diameter smaller than 30mm
- At present, the facilities with the daily processing ability of 1×10^6t have been developed.
3.4 Field trial

3.4.1 Processing scale

After finishing the above-mentioned work, CNPC decided to build a base of 30×10^3 t shale oil capacity and had a ceremony on Aug. 12, 2008 in Mudanjiang.

- Annual processing ability: 600 $\times 10^3$ t
- Annual oil-production: 30×10^3 t
3.4 Field trial

3.4.2 Introduction of process

Processing material is fine particles with diameter less than 30 mm

The best retorting temperature is 520 °C

Recovery ratio of shale oil amounts to 90%

15 tons oil shale can be extracted to produce 1 ton of oil
INDEX

Oil shale resource in china

The current status of shale oil production in china

The prospect for development and use of oil shale CNPC

Conclusions
Because the oil shale of Liushuhe basin in Daqing has the following characters: abundant resources, stable distribution, shallow burial depth, high thickness, it is one of the most preferable developments area.

The organic kerogen type is saprohumolith type, which has high oil and gas production ability.

“Three highs and one low” characters of oil shale in Liushuhe basin (high oil yield, high pyrogenous steam, high heat value and low intensity) makes the Fushun retorting method unsuitable.

Fine particle retorting method has the following advantages: high oil-discharging speed, high oil yield, high utilization of raw materials and low environmental impact. Fine solid particle heat carrier method can be used.

CNPC- the largest oil company in China, through its involvement will promote oil shale development and utilization in to a golden stage of fast development in China.