Overview on Combustion and Retorting of Estonian oil shale, environmental concerns and solutions

Uuve Kirso

Content

Introduction: world deposits, use, solid wastes Environmental impact of energy generation Atmospheric pollution

- chamber experiments
- health effects of fly ash
- mobility of pollutants
- significance of combustion technology

Oil production

- environmental impact
- spent shale wastes
- mobility of pollutants

Reuse of wastes

Conclusions

Co-authors

Acknowledgement

Oil shale deposits worldwide

U. Kirso et al., 26th Oil Shale Symposium, Oct 16-18, 2006. Golden, Colorado

Oil shale reserves

 $411 \times 10^9 t$

or

2900 x 10⁹ barrels of oil equivalents

A significant strategic energy source

Exploitation and use

Brazil, Germany, China, Australia, Russia, Israel ...

... Estonia

world's largest deposits of commercial significance (since 1916)

for producing oil (retorting 500-550 °C)

and combustion for power generation

Why the oil shale is not used?

Organic content of fossil fuels, per cents

U. Kirso et al., 26th Oil Shale Symposium, Oct 16-18, 2006. Golden, Colorado

Environmental impact

descharge of air pollutants

huge amount of solid wastes, e.g., ash and spent shale

generation of hazards of deposits from past to present

Ash dumps (Estonia)

230 Mt wastes

Alkaline water up to 5 Mm³

Surface area $> 20 \text{ km}^2$, height up to 30-40 m

U. Kirso et al., 26th Oil Shale Symposium, Oct 16-18, 2006. Golden, Colorado

Spent shale deposits in Estonia

70-80 Mt of wastes up to 120 m height and ca 200 ha of land

U. Kirso et al., 26th Oil Shale Symposium, Oct 16-18, 2006. Golden, Colorado

Five sisters

Spent shale deposits in Scotland

(kindly provided by Dr. Kenneth G. Boyd)

U. Kirso et al., 26th Oil Shale Symposium, Oct 16-18, 2006. Golden, Colorado

Energy generation in Estonia

by

- pulverized firing (PF) technology (from 1963)
- circulating fluidized bed (FBC) combustion (from 2004)

Total in Narva Elektrijaamad LTD (www.powerplant.ee) 2380 MWe or 484 MWth

Atmospheric discharge of pollutants

FBC vers PF process

Atmospheric pollution (research activity)

PF combustion

- dry deposition & wet precipitation (monitoring date)
- aging of aerosol during long range transport (modelling)
- assessment of human exposure / health effects of particles

Chamber experiments

Fly ash (PF) was injected into the 190 m³ outdoor chamber (UNC)

Particle size and number, humidity, temperature, light, NO, NO_x, O₃, and concentration of priority pollutants were monitored

The fly ash injected into the chamber represents the fly ash emitted into atmosphere

(Over the size distribution measurements)

Health effects of fly ash aerosols

U. Kirso et al., 26th Oil Shale Symposium, Oct 16-18, 2006. Golden, Colorado

Conclusions (chamber study)

During the aging/long range transport of fly ash aerosols:

- The initial aerosol mass concentration decreased quickly due to the deposition of larger particles
- The fine fraction of fly ash particles, which contributes most of the health effects, is relatively stable

PAHs in combustion ash (PF vers FBC)

The average content (µg/kg) of 16 priority PAHs (US EPA List)

PF process	FBC technology
107.8 ± 29.6	47.0 ± 11.0

What about mobility?

Mobility of PAHs (PF vers FBC)

U. Kirso et al., 26th Oil Shale Symposium, Oct 16-18, 2006. Golden, Colorado

Oil production

- Retorting of oil shale (500-550°C) produced oil with discharge of gaseous products (VOC, Phenols) and toxic effluents
 - The ambient air, surface and ground water could be **directly** affected

Toxic compounds in spent shale

The content of total organic compounds: 7-24 mass percents,

including of PAHs, reaching to

13 mg/kg

(Environmental hazard assessment of spent shale. Report. Estonian Environmental Research Center, 2003)

U. Kirso et al., 26th Oil Shale Symposium, Oct 16-18, 2006. Golden, Colorado

Mineral components in spent shale

U. Kirso et al., 26th Oil Shale Symposium, Oct 16-18, 2006. Golden, Colorado

Field leachate of spent shale

Laboratory vers field leaching I

Laboratory vers field leaching II

Phenols

5 mR **FIELD** OH mg/L OH. Me 4 LAB

U. Kirso et al., 26th Oil Shale Symposium, Oct 16-18, 2006. Golden, Colorado

PAHs in field leachate of spent shale

(range, µg/L)	((rar	ige,	$\mu g/$	L))
---------------	---	------	------	----------	----	---

Naphthalene	0.2 - 2.3
-------------	-----------

Current activity and further perspectives I

The distribution of over 50 elements was quantified by inductively coupled plasma mass spectrometry (ICP-MS):

- Combustion ash and spent shale samples
- Laboratory and field leachates
- Post-leached solid samples
- Particulate matter of urban aerosols

The results will be published soon

Current activity and further perspectives II

The recently introduced ultrahigh resolution FTICR (Fourier transform ion cyclotron) mass spectrometry was used for

in-depth analysis of complex anthropogenic matrices, e.g., combustion ash and spent shale samples, leachates.

The results will be published soon

Solution is not dilution

...but reuse of solid wastes as byproducts.

An example:

Hydrothermal Alcaline Treatment of Oil Shale Ash For Synthesis of Tobermorites

by

Janek REINIK, Ivo HEINMAA, Jyri-Pekka MIKKOLA, Uuve KIRSO Fuel, (2006), doi: 00.0016/j.fuel.2006.09.010

U. Kirso et al., 26th Oil Shale Symposium, Oct 16-18, 2006. Golden, Colorado

Conclusions

 existing technology of oil shale combustion and retorting creates serious environmental problems

 sustainable use of oil shale implies modern technology and recycling of solid waste

Co-authors

Natalya Irha, Gunnar Karelson, Margit Laja,

Janek Reinik, Erik Teinemaa, and Gary Urb

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia

Richard M. Kamens and Michael R. Strommen

für Umwelt und Gesundheit

Department of Environmental Sciences and Engineering, School of Public Health,

University of North Carolina at Chapel Hill, USA

Antonius Kettrup, Istvan Gebefügi, Philippe Schmitt-Kopplin

GSF, Institute of Ecological Chemistry, Neuherberg, Germany

Eiliv Steinnes

Norwegian University of Science and Technology, Department of Chemistry, Trondheim, Norway

U. Kirso et al., 26th Oil Shale Symposium, Oct 16-18, 2006. Golden, Colorado

Acknowledgements

Estonian Science Foundation Grant No 5130 and 6828

Urban air pollution and health effects (EST 02/003)
Bilateral Cooperation Project between Germany and
Estonia, 2002-2005

European Science Foundation: Program INTROP 2004-8

Fulbright Award, USA

Thank you for your attention!

U. Kirso et al., 26th Oil Shale Symposium, Oct 16-18, 2006. Golden, Colorado